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Abstract. We show that the cubic shape invariant K3, which provides a measure for triaxiality for β-rigid
nuclei, can be obtained from a small number of observables. This affords approximations which have been
tested to hold within a few percent in the rigid triaxial rotor model and the interacting boson model.

PACS. 21.10.Ky Electromagnetic moments – 21.60.Ev Collective models – 21.60.Fw Models based on
group theory

1 Introduction

The deformation parameters β and γ from the geomet-
rical model are not easy to define in all cases, e.g., in
vibrational nuclei. They are of course model dependent
and usually do not take fluctuations into account. An
alternative approach to nuclear deformation is given by
quadrupole shape invariants [1,2]. These shape invariants
can be considered as the “real” shape parameters, as they
are observables, and hence do not involve any model in-
put. However, exact values can in general only be obtained
from large (complete) sets of E2 matrix elements, which
are rarely available, for a small set of stable nuclei. The
aim of the current work is to show that the shape param-
eter K3, which is related to triaxiality, can be obtained
with good accuracy from only a few experimental observ-
ables. While triaxiality is discussed also for excited states
and bands, e.g., in terms of chirality [3] or wobbling [4],
the following discussion is restricted to triaxiality in the
ground state of even-even nuclei.

Quadrupole shape invariants are defined by [5]

Kn = qn/
(
q
n/2
2

)
, (1)

with higher-order moments of the quadrupole operator in
a given state, in our case the ground state, of the type

qn = αn 〈0
+
1 | [ Q . . . Q

︸ ︷︷ ︸
](0) |0+1 〉

n

, (2)

with geometrical factors αn and using tensor coupling for
the quadrupole operators Q. In analogy to the geometrical
model, where β and γ correspond to a (rigid) minimum
in the potential, effective deformation parameters can be
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defined as averages in the ground state,

q2 =

(
3ZeR2

4π

)2

〈β2〉 ≡

(
3ZeR2

4π

)2

βeff
2, (3)

and

K3 = −
〈β3 cos 3γ〉

〈β2〉3/2
≡ − cos(3γeff), (4)

with nuclear radius R, proton number Z and charge e. K4

and K6 give measures for fluctuations in β and γ in the
non-rigid case. While, for the rigid rotor, γeff is equal to
the geometrical γ-value, it provides a measure for effective
triaxiality also for vibrational or γ-soft nuclei. However, we
note that the K-parameters are in general not equivalent
to the geometrical deformation parameters. This is due
to fluctuations in β and γ which are incorporated in the
averages in the ground state (compare eqs. (2)–(4)). Due
to averaging over β3 cos 3γ, eq. (4) gives an effective γ-
deformation related to the geometrical model only if β
is rigid. This is the case for nuclei transitional between
the well-deformed and the triaxial (γ-soft) rotor. On the
other hand, if γ is rigid, K3 reflects the softness in β,
which can be expected for nuclei transitional between the
well-deformed rotor and the vibrator for γ = 0◦.

2 Results

In general, K3 involves a large number of E2 matrix ele-
ments. Applying the Q-phonon scheme [6] and its ∆Q = 1
selection rule for E2 transitions, the number of needed ma-
trix elements reduces drastically and K3 can be written
in terms of the quadrupole moment Q(2+1 ) only. However,
from calculations in the interacting boson model (IBM-1)
and the rigid triaxial rotor model (RTRM) it is seen that
this approach leads to large deviations from the exact
value of K3 in transitional regions.
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Fig. 1. R
K3

IBM, calculated over the IBM-1 symmetry space.

In a second approximation, introducing B(E2; 2+1 →
2+1 ) = 35/(32π) ·Q(2+1 )

2 [7], and allowing one matrix ele-
ment with ∆Q = 2, we derive an approximation [8]

Kappr
3 =

√

7

10
sign

(
Q
(
2+1
))

(√

B(E2; 2+1 → 2+1 )

B(E2; 2+1 → 0+1 )

−2

√

B(E2; 2+2 → 0+1 ) ·B(E2; 2
+
2 → 2+1 )

B(E2; 2+1 → 0+1 )



 , (5)

involving four B(E2) values. The derivation of eq. (5) in-
corporates a sign relation between the four involved ma-
trix elements [9], namely

sign
(
〈2+1 ||Q||2

+
1 〉
)
=

− sign
(
〈0+1 ||Q||2

+
2 〉〈2

+
2 ||Q||2

+
1 〉〈2

+
1 ||Q||0

+
1 〉
)
. (6)

Equation (5) gives a well defined way for deriving an ap-
proximate K3 from data. In order to get an estimate on
the error resulting from the truncation, the validity of the
approximation needs to be tested within models, which
has been done within the IBM-1 and the RTRM. Devia-
tions of the value of Kappr

3 given by eq. (5) from the exact
K3 are small as shown in fig. 1. Herein, the ratio

RK3

IBM =
1 + |Kappr

3 |

1 + |K3|
(7)

has been calculated over the whole parameter space of the
two-parameter IBM-1 Hamiltonian

HIBM = (1− ζ) nd −
ζ

4N
Qχ ·Qχ (8)

by variation of ζ and χ, including the vibrator (U(5)), the
well-deformed rotor (SU(3)), and the γ-soft rotor (O(6))
limits. Calculations within the RTRM show the same qual-
ity of our approximation as depicted in fig. 2, where RK3

geo

is defined in analogy to eq. (7).
Note that the absolute value of the quadrupole mo-

ment can be calculated from the 3-B(E2)-relation

B
(
E2; 2+1 → 2+1

)
=

B
(
E2; 4+1 → 2+1

)
−B

(
E2; 2+2 → 2+1

)
, (9)

which was derived in a similar way in [7].
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Fig. 2. RK3
geo, calculated within the RTRM for γ ∈ [0, 30].

Table 1. The approximative shape invariant Kappr
3 for transi-

tional Os isotopes. Effective γ- and β-deformation parameters
are given in the last two columns.

K
appr
3 γeff βeff

188Os −0.63(5) 17(3) 0.185
190Os −0.35(9) 23(3) 0.177
192Os −0.3(1) 25(2) 0.167

Exemplarily, table 1 gives Kappr
3 and γeff , derived from

eqs. (5) and (4), respectively, for Os isotopes transitional
between the rigid axially symmetric rotor and the γ-soft
rotor. Data has been taken from the nuclear data sheets
and stems mostly from D. Cline and co-workers, who made
large sets of E2 matrix elements available. Included in ta-
ble 1 are the calculated values of βeff from eq. (3) where,
using the same truncation as for Kappr

3 , q2 can be approx-
imated by

qappr2 = B
(
E2; 0+1 → 2+1

)
. (10)

It is seen that β-deformation decreases while the value
of γ rises towards 30◦, which is the limit of maximum
(soft) triaxiality.
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